
Digital Object Identifier (DOI) 10.1007/s100529900235
Eur. Phys. J. C 12, 521–534 (2000) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 2000

Runge–Kutta methods and renormalization
Ch. Brouder

Laboratoire de Minéralogie-Cristallographie, CNRS UMR7590, Universités Paris 6, Paris 7, IPGP, Case 115, 4 place Jussieu,
75252 Paris Cedex 05, France (e-mail: brouder@lmcp.jussieu.fr)

Received: 6 July 1999 / Published online: 10 December 1999

Abstract. Rooted trees have been used to calculate the solution of nonlinear flow equations and Runge–
Kutta methods. More recently, rooted trees have helped systematizing the algebra underlying renormal-
ization in quantum field theories. The Butcher group and B-series establish a link between these two
approaches to rooted trees. On the one hand, this link allows for an alternative representation of the al-
gebra of renormalization, leading to nonperturbative results. On the other hand, it helps to renormalize
singular flow equations. The usual approach is extended here to nonlinear partial differential equations. A
nonlinear Born expansion is given, and renormalization is used to partly remove the secular terms of the
perturbative expansion.

1 Introduction

The purpose of this paper is to point out a link between
two apparently remote concepts: Runge–Kutta methods
and renormalization.

Runge published in 1895 [1] an efficient algorithm to
compute the solution of ordinary differential equations.
For an equation of the type dy/ds = f(y(s)), he defined
k1 = f(yn), k2 = f(yn + hk1/2), yn+1 = yn + hk2. His
algorithm was improved in 1901 by Kutta [2] and became
known as the Runge–Kutta method. It is now one of the
most widely used numerical methods.

In 1972, Butcher published an extraordinary article in
which he analyzed general Runge–Kutta methods on the
basis of the algebra of rooted trees (ART). He showed that
the Runge–Kutta methods form a group1 and found ex-
plicit expressions for the inverse of a method or the prod-
uct of two methods. He also gave an explicit perturbative
solution of nonlinear differential equations, written as a
series indexed by rooted trees (now called B-series). Im-
portant developments were made in 1974 by Hairer and
Wanner [3]. Since then, B-series are used in the analysis
of Runge–Kutta methods.

On the other hand, renormalization enables us to re-
move infinities in quantum field theory. Recently, Kreimer
discovered a Hopf algebra of rooted trees that brings or-
der and beauty to the intricate combinatorics of renor-
malization [4]. He established formulas that automate the
subtraction of infinities to all orders of the perturbation
expansion and proved the effectiveness of his method for
the practical computation of renormalized quantities in
joint works with Broadhurst [5] and Delbourgo [6]. More-
over, his approach sheds new light on the mechanics of the
renormalization group [7], and on the problem of overlap-

1 Hairer and Wanner called it the Butcher group [3].

ping divergences [8,9] by showing that overlapping diver-
gent diagrams correspond to a sum of decorated rooted
trees, while nonoverlapping ones correspond to a single
tree. Furthermore, Connes and Kreimer revealed a deep
connection between the ART and the Hopf algebra of dif-
feomorphisms [10].

In 1986, Dür ([11], p. 88–90), studied Butcher’s group
and discovered a Hopf algebra and a Lie algebra of rooted
trees which are identical (up to order) to those described
by Connes and Kreimer in [10]. This establishes a clear
connection between Butcher’s group and renormalization.
The purpose of this paper is to further explore this con-
nection. First, some concepts developed by Kreimer us-
ing Hopf algebra will be translated into Butcher’s lan-
guage. This will enable us to give an alternative deriva-
tion of some of Kreimer’s results, and to prove a “re-
markable property” that was conjectured in [5]. Second,
Butcher’s approach will be applied to continuous Runge–
Kutta methods, and it will be expanded to give a B-series
for the solution of nonlinear partial differential equations.
This B-series is a nonlinear analog of the Born series of
linear differential equations.

Since Butcher’s theory is not a common tool of physics,
this paper will be reasonably self-contained and, it is
hoped, pedagogical. After an introduction to rooted trees,
the relation between differentials and rooted trees is pre-
sented. Then Butcher’s approach to Runge–Kutta meth-
ods is sketched. Several B-series are calculated, and a con-
nection with the Hopf structure of the ART is exhibited.
The application of Runge–Kutta methods to renormaliza-
tion is expounded by use of a toy model of field theory (not
of renormalization) which is solved nonperturbatively. Fi-
nally, the solution of nonlinear partial differential equa-
tions is written as a formal B-series.

522 Ch. Brouder: Runge–Kutta methods and renormalization

2 The rooted trees

In this section, the rooted trees are introduced and useful
functions on rooted trees are defined.

A rooted tree is a graph with a designated vertex,
called a root, such that there is a unique path from the
root to any other vertex in the tree [12]. Several examples
of rooted trees are given in the next section in which the
root is the black point and the other vertices are white
points. We follow the convention of nature and put the
root at the bottom of the tree. The number of edges of
the unique path from a vertex v to the root is called the
level number of vertex v. The root has level number 0.
For any vertex v, the children of v are the vertices v′ with
an edge common with v and a level number greater than
that of v. A vertex without children is called a leaf. Rooted
trees are sometimes called pointed trees or arborescences.

The tree with one vertex is designated as � , and the
tree with zero vertices as 1.

2.1 Operations and functions on trees

An important operation is the grafting of trees. If t1,
. . . ,tk are trees, t = B+(t1 t2 . . . tk) is defined as the tree
obtained by the creation of a new vertex r and the join-
ing of the roots of t1, . . . ,tk to r, which becomes the root
of t. In rooted trees, the branches may be permuted; for
example, B+(t1t2) and B+(t2t1) represent the same tree.

A number of functions on rooted trees will be used
in the following. We define first |t|, which designates the
number of vertices of a tree t. Clearly, |B+(t1 t2 . . . tk)| =
|t1| + |t2| + · · · + |tk| + 1.

The tree factorial t! is a natural number defined recur-
sively as

� ! = 1,
B+(t1 t2 . . . tk)! = |B+(t1 t2 . . . tk)| t1!t2! · · · tk!.

The notation t! is taken from Kreimer [7] because t! gener-
alizes the factorial of a number. Besides, t! has also similar-
ities with the product of hooklengthes of a Young diagram
in the representation theory of the symmetric group [13].
A few examples may be useful:

� ! = 2, � ! = 6, � ! = 12, � ! = 24, � ! = 4.

In [10], Connes and Kreimer define a natural growth
operator N on trees: N(t) is the set of |t| trees ti, where
each ti is a tree with |t|+1 vertices obtained by attaching
an additional leaf to a vertex of t. For example, N(1) = � :

N() =
 , N(�) = � + , N(�) = � + 2� .

Some trees may appear with multiplicity.

2.2 The tree multiplicity α(t)

A central function over trees is the tree multiplicity α(t),
which is defined in [7] as the number of times tree t ap-
pears in Nn(1) where n = |t| is the number of vertices of
t. In the literature ([14,15], p. 92, [16], p. 147), α(t) is con-
sidered as the number of “heap-ordered trees” with shape
t, where a heap-ordered tree with shape t is a labeling
of each vertex of t (i.e., a bijection between the vertices
and the set of numbers 0, 1, . . . , |t| − 1) such that the la-
bels decrease along the path going from any vertex to the
root. This is called a monotonic labeling in [16], p. 147.
For instance,

� � �
There are (n− 1)! heap-ordered trees with n vertices,

summing over trees with all possible shapes. This can be
seen by the defining of a bijection between the permuta-
tions of n − 1 numbers and the heap-ordered trees. Let
(p1, . . . , pn−1) be a permutation of (1, . . . , n− 1); then

– p1 is a subroot, labeled p1
– for i=2 to n− 1

– if all pj for 1 ≤ j ≤ i are such that pj > pi, then pi

is a subroot, labeled pi

– otherwise, let pj be first number such that pj < pi,
in the series pi−1, pi−2, . . . , p1, then the ith vertex,
labeled pi, is linked to pj by an edge

– when all (p1, . . . , pn−1) have been processed, all sub-
roots are linked to a common root, labeled 0.

Clearly, this procedure generates heap-ordered trees.
For a given tree t, it is possible to calculate α(t) by a

formula given in [14] (see also. [15], p. 92 and [7]):

α(t) =
|t|!
t!σ(t)

, (1)

where σ(t) is the symmetry factor of t, defined as ([15]
p. 89)

σ(�) = 1,
σ(B+(tn1

1 . . . tnk

k)) = n1!σ(t1)n1 . . . nk!σ(tk)nk . (2)

The notation t = B+(tn1
1 . . . tnk

k) means that t is obtained
by grafting n1 times tree t1, . . . , nk times tree tk, where
the k trees t1, . . . , tk are all different.

These functions over trees have been defined indepen-
dently by several authors and various notations exist in
the literature. t = B+(t1 t2 . . . tk) is also denoted by t =
[t1, t2, . . . , tk], but we avoid this notation because of the
possible confusion with commutators. The alternative no-
tations for |t| are r(t), ρ(t), and #t. The tree factorial t!
is denoted γ(t) in numerical analysis. α(t) is also written
CM(t). The symmetry factor σ(t) is also called St.

Finally, we use the term algebra of rooted trees and
not Hopf algebra of rooted trees, because thanks to the
work of Butcher, the Hopf structure is only one aspect of
the ART.

Ch. Brouder: Runge–Kutta methods and renormalization 523

3 Differentials and rooted trees

Here, rooted trees are associated to differentials of a func-
tion, and the solution of a general nonlinear flow equation
is given as a sum indexed by rooted trees. Assume that
we want to solve the flow equation (d/ds)x(s) = F [x(s)],
x(s0) = x0, where s is a real, x is in R

N , and F is a smooth
function from R

N to R
N , with components f i(x). This is

the equation of the flow of a vector field.

3.1 Calculation of the nth derivative

Let us write the derivatives of the ith component of x(s)
with respect to s:

d2xi(s)
ds2

=
d
ds
f i[x(s)] =

∑
j

∂f i

∂xj
[x(s)]

dxj

ds

=
∑

j

∂f i

∂xj
[x(s)]f j [x(s)],

d3xi(s)
ds3

=
d
ds

∑

j

∂f i

∂xj
[x(s)]f j [x(s)]

=
∑
jk

∂2f i

∂xj∂xk
[x(s)]f j [x(s)]fk[x(s)] +

∑
jk

∂f i

∂xj
[x(s)]

∂f j

∂xk
[x(s)]fk[x(s)].

A simplified notation is now required. Let

f i = f i[x(s)],

f i
j1j2···jk

=
∂kf i

∂xj1 · · · ∂xjk

[x(s)],

so that

dxi(s)
ds

= f i,
d2xi(s)

ds2
= f i

jf
j ,

d3xi(s)
ds3

= f i
jkf

jfk + f i
jf

j
kf

k,

where summation over identical indices appearing in lower
and upper positions is implicitly assumed.

With this notation, we can write the next term as

d4xi

ds4
= f i

jf
j
kf

k
l f

l + f i
jf

j
klf

kf l + 3f i
jkf

j
l f

kf l + f i
jklf

jfkf l

= � + � + 3 � + � .

In the last line of this equation, a rooted tree was as-
sociated to each term of the sum. This relation between
differentials and rooted tree was established by Arthur
Cayley in 1857 [17]. With this notation, there is a one-to-
one relation between a rooted tree with n vertices and a
term of dnx(s)/dsn.

3.2 Elementary differentials

To make more precise the relation between differentials
and rooted trees, we follow Butcher ([15] p. 154) and call
“elementary differentials” the δt (with components δi

t) de-
fined recursively for each rooted tree t by:

δi
• = f i,

δi
t = f i

j1j2···jk
δj1
t1 δ

j2
t2 · · · δjk

tk
, (3)

when t = B+(t1 t2 · · · tk).
Using this correspondence between rooted trees and

differentiation of expressions, we see that differentiating
δt(s) with respect to s adds a leaf to each vertex of t.
Therefore,

dδt
ds

= Nδt,

where N is the natural growth operator introduced in
Sect. 2.1. More precisely, if N(t) =

∑
imiti, then Nδt

is defined as
∑

imiδti
.

Hence, the solution of the flow equation is

x(s) = x0 +
∞∑

n=1

(s− s0)n

n!
dnx

dsn
(s0)

= x0 +
∞∑

n=1

(s− s0)n

n!
Nn−1δ•(s0)

= x0 +
∑

t

(s− s0)|t|

|t|! α(t)δt(s0), (4)

where |t| and α(t) have been defined in Sect. 2. The ar-
gument s0 of δt(s0) in (4) means that the derivatives are
calculated at the point x0 = x(s0). Thus, it would also be
possible to write δt(x0).

4 Runge–Kutta methods

In this section, the usual discrete Runge–Kutta methods
are introduced, and the operations of Butcher’s group are
defined. We have seen that sums over trees appear quite
naturally with differential equations. So, if one is given a
map φ that assigns a value (e.g., a real number, a complex
number, a vector) to each tree t, is there a function F
such that φ(t) = δt? Generally, the answer is no. Consider
a map φ such that all components are equal (and also
denoted φ):

φ(�) = 1, φ(�) = a, φ(�) = b,

so that for any i, f i = 1, f i
jf

j = a and f i
jf

j
kf

k = b. The
first two equations give

∑
j f

i
j = a, so the third one gives

f i
jf

j
kf

k =
∑

j f
i
ja = a2, and φ(t) cannot be represented

with elementary differentials (i.e., it cannot be the δt) of a
function F if b 6= a2. In fact, the number of maps reachable
as elementary differentials is rather small.

524 Ch. Brouder: Runge–Kutta methods and renormalization

To define the algebra of rooted trees, we need a product
of trees. The product of t and t′ is written tt′ (the product
of two trees is not a tree, but a simple juxtaposition of
trees; one might think of a forest). This product is assumed
commutative. In the algebra, a tree t can be multiplied by
a scalar λ (written λt), and two trees t and t′ can be added
(giving t+ t′). We assume that the product is distributive
with respect to the sum. For instance, t(λ1t1 + λ2t2) =
λ1tt1 + λ2tt2.

Given a map φ defined over the rooted trees, we can
extend it to a homomorphism of the algebra of rooted
trees by defining φ(λ1t1 + λ2t2) = λ1φ(t1) + λ2φ(t2) and
φ(tt′) = φ(t)φ(t′) where the componentwise product was
used on the right-hand side.

If vector flows (i.e., δt) are not enough to span all pos-
sible φ, what more general equation can do that? As we
shall see now, the answer is the Runge–Kutta methods
[18].

4.1 Butcher’s approach to the Runge–Kutta methods

Some efficient numerical algorithms for solving a flow equa-
tion dx(s)/ds = F [x(s)] are known as Runge–Kutta meth-
ods. They are determined by an m ×m matrix a and an
m-dimensional vector b, and at each step, a vector xn is
defined as a function of the previous value xn−1 by:

Xi = xn−1 + h

m∑
j=1

aijF (Xj),

xn = xn−1 + h
m∑

j=1

bjF (Xj),

where i ranges from 1 to m. If the matrix a is such that
aij = 0 if j ≥ i, then the method is called explicit (be-
cause each Xi can be calculated explicitly); otherwise the
method is implicit.

In 1963, Butcher showed that the solution of the cor-
responding equations,

Xi(s) = x0 + (s− s0)
m∑

j=1

aijF (Xj(s)),

x(s) = x0 + (s− s0)
m∑

j=1

bjF (Xj(s)),

is given by

Xi(s) = x0 +
∑

t

(s− s0)|t|

|t|! α(t)t!
m∑

j=1

aijφj(t)δt(s0),

x(s) = x0 +
∑

t

(s− s0)|t|

|t|! α(t)t!φ(t)δt(s0). (5)

These series over trees are called B-series in the nu-
merical analysis literature, in honor of John Butcher ([16],

p. 264). The homomorphism φ is defined recursively as a
function of a and b, for i = 1, . . . ,m:

φi(�) = 1,

φi(B+(t1 · · · tk)) =
∑

j1...jk

aij1 . . . aijk
φj1(t1) . . . φjk

(tk),

φ(t) =
m∑

i=1

biφi(t).

When one compares (4) and (5), it is clear that the Runge–
Kutta solution approximates the solution of the original
flow equation up to order n if φ(t) = 1/t! for all trees with
up to n vertices.

In 1972 [18], Butcher made further progress. First, he
showed that Runge–Kutta methods are “dense” in the
space of rooted tree homomorphisms. More precisely, he
showed that given any finite set of trees T0 and any func-
tion θ from T0 to R, there is a Runge–Kutta method (i.e.,
a matrix a and a vector b) such that the corresponding φ
agrees with θ on T0 (see also [15] p. 167).

4.2 Further developments

Furthermore, Butcher proved that the combinatorics he
used to study Runge–Kutta methods in 1963 [14] was hid-
ing an algebra. If (a,b) and (a′,b′) are two Runge–Kutta
methods (having dimensions m and m′, respectively) with
the corresponding homomorphisms φ and φ′, then the
product of these Runge–Kutta methods is the (a′′,b′′) of
dimension m+m′, defined by ([15], p. 312 et seq.)

a′′
ij = aij if 1 ≤ i ≤ m and 1 ≤ j ≤ m,

a′′
ij = a′

ij if m+ 1 ≤ i ≤ m+m′

and m+ 1 ≤ j ≤ m+m′,
a′′

ij = bj if m+ 1 ≤ i ≤ m+m′ and 1 ≤ j ≤ m,

a′′
ij = 0 if 1 ≤ i ≤ m and m+ 1 ≤ j ≤ m+m′,

b′′i = bi if 1 ≤ i ≤ m,

b′′i = b′i if m+ 1 ≤ i ≤ m+m′.

The homomorphism corresponding to (a′′,b′′) is denoted
φ′′ = φ ? φ′ 2.

Butcher proved that the φ derived from Runge–Kutta
methods form a group for the product ?. Thus, each ele-
ment φ has an inverse3. This inverse is quite important in
practice, since it is involved in the concept of self-adjoint
Runge–Kutta methods, which have long-term stability in
time-reversal symmetric problems ([16], p. 219). In fact,
Butcher found an explicit expression for all the operations
of the Hopf structure of the ART.

Hairer and Wanner ([16], p. 267) built upon the work
of Butcher and proved the following important result: If

2 (φ?φ′)(t) = m[(φ⊗φ′)∆(t)], the product is the convolution
product of the Hopf algebra of rooted trees.

3 φ−1(t) = φ[S(t)], where S is the antipode of the Hopf al-
gebra structure.

Ch. Brouder: Runge–Kutta methods and renormalization 525

we denote

B(φ, F) = 1 +
∑

t

(s− s0)|t|

|t|! α(t)t!φ(t)δt(s0),

then

B(φ′, B(φ, F)) = B(φ ? φ′, F).

The Hairer and Wanner theorem corresponds to the
generalized Chen iterated integral theorem proven by Krei-
mer in [7]4.

5 The continuous limit

In his seminal article [18], Butcher did not restrict his
treatment to finite sets of indices. It is possible to con-
sider the continuous limit of Runge–Kutta methods. A
possible form of it is an integral equation, which we write
arbitrarily between 0 and 1:

Xu(s) = x0 + (s− s0)
∫ 1

0
dv a(u, v)F (Xv(s)),

x(s) = x0 + (s− s0)
∫ 1

0
du b(u)F (Xu(s)),

the solution of which is

Xu(s) = x0

+
∑

t

(s− s0)|t|

|t|! α(t)t!
∫ 1

0
dva(u, v)φv(t)δt(s0),

x(s) = x0 +
∑

t

(s− s0)|t|

|t|! α(t)t!φ(t)δt(s0). (6)

The homomorphism φ is defined recursively as a function
of a and b:

φu(�) = 1,

φu(B+(t1 · · · tk)) =
∫ 1

0
du1a(u, u1)φu1(t1) . . .

∫ 1

0
duka(u, uk)φuk

(tk),

φ(t) =
∫ 1

0
dub(u)φu(t).

This definition is very close to the discrete version given
in Sect. 4.1. Continuous Runge–Kutta (RK) methods do
not seem to have been used much, except for an example
in Butcher’s book ([15] p. 325). Therefore, this section will
take a slow pace and give many examples.

4 I thank Dirk Kreimer for drawing my attention to this
point.

5.1 Butcher’s example

It will be useful in the following to have the results of a
modified version of Butcher’s example, so we consider:

Xu(s) = x0 + (s− s0)
∫ u

0
F [Xv(s)]dv, (7)

x(s) = x0 + (s− s0)
∫ 1

0
F [Xu(s)]du,

which corresponds to a(u, v) = 1[0,u](v), b(u) = 1. Here
1[0,u](v) is the characteristic function of the interval [0, u]:
it is 1 if 0 ≤ v ≤ u and 0 otherwise. This Runge–Kutta
method will be referred to as the “simple integral method”.

If we take the derivative of (7) with respect to u, we
obtain

d
du
Xu(s) = (s− s0)F [Xu(s)],

so Xu(s) = y(s0 + (s− s0)u), where y(s) is the solution

y(s) = x0 +
∫ s

s0

F [y(s′)]ds′.

Moreover,

x(s) = x0 + (s− s0)
∫ 1

0
F [Xu(s)]du

= x0 + (s− s0)
∫ 1

0
F [y(s0 + (s− s0)u)]du

= x0 +
∫ s

s0

F [y(s′)]ds′ = y(s).

The corresponding homomorphism φ(t) is defined by

φu(�) = 1,

φu(B+(t1 · · · tk)) =
∫ u

0
du1φu1(t1)· · ·

∫ u

0
dukφuk

(tk),

φ(t) =
∫ 1

0
duφu(t).

Using the facts that |B+(t1 · · · tk)| = (|t1| + · · · + |tk| + 1)
and B+(t1 · · · tk)! = (|t1| + · · · + |tk| + 1)t1! . . . tk! it is
proven that the solutions of these equations are

φu(t) =
|t|u|t|−1

t!
,

φ(t) =
1
t!
.

If we introduce φ(t) = 1/t! into (5), we obtain (4).
Thus we confirm that the solution of the equation

x(s) = x0 +
∫ s

s0

F [x(s′)]ds′

is

x(s) = x0 +
∑

t

(s− s0)|t|

|t|! α(t)δt(s0).

526 Ch. Brouder: Runge–Kutta methods and renormalization

5.2 First applications

The above example already brings some interesting appli-
cations. But we must start by giving a way to calculate
δt(s0) in a simple case.

5.2.1 Calculation of δt(s0)

To obtain specific results, we must choose a particular
function F . The simplest choice is to take a vector function
F , where all components are identical; for any i from 1 to
N , f i(x) = f(x̄), and x̄ is the average over the components
of x: x̄ =

∑N
j=1 x

j/N . We assume that f has the series
expansion

f(s) =
∞∑

n=0

f (n)(0)sn

n!
.

From the definition of δt in (3), one can show recur-
sively that for i = 1, . . . , N , δi

t(0) is independent of i (and
will be denoted δt) and

δ• = f(0),

δt = f (k)(0)δt1δt2 · · · δtk
when t = B+(t1 t2 · · · tk). (8)

In [7], Kreimer defined a similar quantity that he called
Bt. Here δt and Bt will be used as synonymous.

The simplest case is f(s) = exp s and s0 = 0, where
f (n)(0) = 1 and δt = 1 for all trees t.

5.2.2 Weighted sums of rooted trees

If we take f = exp, s0 = 0 and x0 = 0 in the simple inte-
gral method (see Sect. 5.1), we have to solve the equation

x(s) =
∫ s

0
exp[x(s′)]ds′,

which can be differentiated to give x′(s) = exp(x(s)) with
x(0) = 0. This has the solution

x(s) = − log(1 − s) =
∞∑

n=1

sn

n
.

On the other hand, the homomorphism corresponding to
the simple integral method is φ(t) = 1/t!, and the B-series
for this problem is

x(s) =
∑

t

s|t|

|t|!α(t).

Comparing the last two results, we find
∑
|t|=n

α(t) = (n− 1)!

In other words, the number of heap-ordered trees with n
vertices is (n− 1)!, as was said in Sect. 2.2.

5.2.3 Derivatives of inverse functions

We can try to extend the last example to an arbitrary
function f(x). The equation to solve becomes

x(s) =
∫ s

0
f [x(s′)]ds′, (9)

or x′(s) = f(x(s)) with x(0) = 0. Let

S(x) =
∫ x

0

dy
f(y)

,

which gives us s = S(x), and the solution of (9) is x(s) =
S−1(s), where S−1 is the inverse function of S. If f = exp,
S(x) = 1−exp(−x) and we confirm that x(s) = − log(1−
s).

We can use this result to calculate the derivatives of
a function x(s), given as the inverse of a function S(x).
To do this, we define f(x) = 1/S′(x) and, using (4), we
obtain

x(n)(0) =
∑
|t|=n

α(t)δt, (10)

where δt is calculated from f(x) using (8) in Sect. 5.2.1.
This method can also be used to find the function f

satisfying given values for

an =
∑
|t|=n

α(t)δt,

where δt is calculated from f . For instance, if we want∑
|t|=n

α(t)δt = n!,

we must take f(x) = (1 + x)2.

5.3 Kreimer’s sum

In [7], Kreimer calculates the sum

Sn =
∑
|t|=n

α(t)
t!

using combinatorial arguments. We calculate it now with
Butcher’s tools. The sum Sn comes in the B-series (5)
with φ(t) = 1/(t!)2. Since this φ(t) is the square of the
previous one, the corresponding Runge–Kutta method can
be realized as the tensor product of two simple integral
methods (see Sect. 5.1). In other words,

a(u, u′, v, v′) = a(u, v)a(u′, v′) = 1[0,u](v)1[0,u′](v′),

b(u, u′) = b(u)b(u′) = 1

and the Runge–Kutta method is now

Xuu′(s) = x0 + (s− s0)
∫ u

0
dv

∫ u′

0
dv′f [Xvv′(s)],

x(s) = x0 + (s− s0)
∫ 1

0
du

∫ 1

0
du′f [Xuu′(s)].

Ch. Brouder: Runge–Kutta methods and renormalization 527

The corresponding homomorphism φ(t) is given by

φuu′(�) = 1,

φuu′(B+(t1 · · · tk)) =
∫ u

0
du1

∫ u′

0
du′

1φu1u′
1
(t1) . . .

∫ u

0
duk

∫ u′

0
du′

kφuku′
k
(tk),

φ(t) =
∫ 1

0
du

∫ 1

0
du′φuu′(t).

The solutions of these equations are

φuu′(t) =
|t|2(uu′)|t|−1

(t!)2
,

φ(t) =
1

(t!)2
,

so that from (5),

Xuu′(s) = x0 +
∑

t

(s− s0)|t|

|t|!
α(t)(uu′)|t|

t!
δt(s0).

The conclusion is that Xuu′(s) is in fact a function of
uu′ and not of u and u′. More precisely, we know from
the general formula (5) that the B-series for the integral
x(s) = x0 + (s− s0)

∫ 1
0 du

∫ 1
0 du′f [Xuu′(s)] is

x(s) = x0 +
∑

t

(s− s0)|t|

|t|!
α(t)
t!

δt(s0),

thus Xuu′(s) = x(s0+(s−s0)uu′). If we use the successive
changes of variables w = uu′, v′ = s0 + (s − s0)w and
v = s0 + (s− s0)u, we find

x(s) = x0 + (s− s0)
∫ 1

0
du

∫ 1

0
du′f [x(s0 + (s− s0)uu′)]

= x0 + (s− s0)
∫ 1

0

du
u

∫ u

0
dwf [x(s0 + (s− s0)w)]

= x0 +
∫ 1

0

du
u

∫ s0+(s−s0)u

s0

dv′f [x(v′)]

= x0 +
∫ s

s0

dv
v − s0

∫ v

s0

dv′f [x(v′)].

With the initial values x0 = s0 = 0, this gives us

x(s) =
∫ s

0

dv
v

∫ v

0
dv′f [x(v′)],

or sx′′ + x′ = f(x) with x(0) = 0 and x′(0) = f(0). If we
take again f(x) = exp(x) we find sx′′ + x′ = exp(x) with
x(0) = 0 and x′(0) = 1, hence

x(s) = −2 log(1 − s/2) =
∞∑

n=1

sn

n2n−1 .

Comparing this with the B-series

x(s) =
∑

t

s|t|

|t|!
α(t)
t!

, (11)

we obtain

Sn =
∑
|t|=n

α(t)
t!

=
(n− 1)!
2n−1 ,

which is the result found by Kreimer in [7].
As a final example, we can consider the Runge–Kutta

method a(u, v) = 1, b(u) = 1, which gives φ(t) = 1 for all
trees t. The equation for x(s) is now a fixed-point problem
x(s) = s exp(x(s)), whose solution was already known by
Euler [19],

x(s) =
∑

n

sn

n!
nn−1,

so that ∑
|t|=n

α(t)t! = nn−1.

These examples show that B-series can be used as gen-
erating series for sums over trees.

5.4 Butcher’s group

The operations of Butcher’s group are given here for con-
tinuous RK methods. Without loss of generality, we can
take s0 = 0 and rewrite the definition of continuous RK
methods as

Xu(s) = x0 + sAu[F (Xv(s))],
X(s) = x0 + sB[F (Xu(s))].

In the above formula, the notation Au[F (Xv(s))] means
that Xv(s) is a function of v over which the operator Au

integrates. The result, Au[F (Xv(s))], is now a function of
u. Similarly, B[F (Xu(s))] integrates over u. Au and B are
linear operators. For example, the simple integral method
corresponds to Au =

∫ u

0 dv and B =
∫ 1
0 dv.

The solution of these equations is

Xu(s) = x0 +
∑

t

s|t|

|t|!α(t)t!Au[φv(t)]δt,

X(s) = x0 +
∑

t

s|t|

|t|!α(t)t!φ(t)δt,

where, as usual,

φu() = 1,
φu(B+(t1 · · · tk)) = Au[φu1(t1)] . . . Au[φuk

(tk)],
φ(t) = B[φu(t)].

Each pair of operators (Au, B) defines a continuous RK
method. We can now define a product of RK methods.

528 Ch. Brouder: Runge–Kutta methods and renormalization

5.4.1 The product

Following [18], the product of φ and φ′ is denoted φ′′ =
φ ? φ′ and is defined as follows. Let Au, B, and A′

u, B′
be the continuous Runge–Kutta methods of, respectively,
φ(t) and φ′(t). To be specific, we consider that u varies
from 0 to 1. Then the Runge–Kutta method for φ′′ = φ?φ′
is A′′

u, B′′, where u varies from 0 to 2 and

A′′
u(Xv) = Au(Xv) if 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1,

A′′
u(Xv) = 0 if 0 ≤ u ≤ 1 and 1 ≤ v ≤ 2,

A′′
u(Xv) = B(Xv) if 1 ≤ u ≤ 2 and 0 ≤ v ≤ 1,

A′′
u(Xv) = A′

u−1(Xv−1) if 1 ≤ u ≤ 2 and 1 ≤ v ≤ 2,

B′′(Xv) = B(Xv) if 0 ≤ v ≤ 1,
B′′(Xv) = B′(Xv−1) if 1 ≤ v ≤ 2.

We show the formula in action:

φ′′
u(!) = 1,
φ′′(") = B(1) +B′(1) = φ(#) + φ′($),
φ′′

u(%) = A′′
u(φ′′

v(&))
= Au(1)1[0,1](u) + (B(1) +A′

u−1(1))1[1,2](u),

φ′′(') = B(Au(1)) +B′(B(1) +A′
u−1(1))

= B(φu(()) +B(1)B′(1) +B′(φ′
u()))

= φ(*) + φ(+)φ′(,) + φ′(-).

This is exactly the convolution product defined by Krei-
mer in [7].

5.4.2 The inverse

For a homomorphism φ(t), we define now the inverse of
φ. If the Runge–Kutta method for φ is Au, B, then the
Runge–Kutta method for φS = φ−1 is AS

u = Au − B,
BS = −B. It is useful to see it working on simple cases:

φS
u(.) = 1 = φu(/),

φS(0) = BS(φS
u(1)) = −B(φu(2)) = −φ(3),

φS
u(4) = AS

u(φS
v (5)) = Au(φv(6)) −B(φv(7))

= φu(8) − φ(9),

φS(:) = −B(φS
u(;)) = −φ(<) +B(1)φ(=)

= −φ(>) + φ(?)φ(@).

This is the antipode of Kreimer’s approach [7].

6 Runge–Kutta methods for renormalization

In this section, we shall follow closely Kreimer’s paper
[7] and define for some of his operations on homomor-
phisms the corresponding transformation of the Runge–
Kutta methods. Instead of attempting a general theory,
we consider a specific example in detail.

6.1 Runge–Kutta method for bare quantities

We consider that a given bare physical quantity can be
calculated as a sum over trees. Examples of such quantities
are given in [5,6], where the Hopf algebra was applied to
iterated one-loop integrals. Broadhurst and Kreimer [5]
have studied the sum

X(s) =
∑

t

s|t|

|t|!Bt.

To define Bt, they start from a function L(δ, ε), regular
(and equal to 1) at the origin. For notational convenience,
the function L will be restricted to only one argument
L(δ), with L(0) = 1. The first step is the definition of Bn

as

Bn =
L(nε)
nε

.

Notice that Bn is singular when ε → 0.
Bt is now obtained recursively from these Bn by

B• = B1,

Bt = B|t|Bt1 · · ·Btk
when t = B+(t1 · · · tk). (12)

To apply Butcher’s method, we take F (Xv) = exp(Xv)
and x0 = 0; this gives δt = 1. Then we must find a pair of
operators (Au,B) such that φ(t) = Bt. We choose

Au(Xv) =
1
ε

∫ u

0
dvL(ε

d
dv
v)Xv, B(Xv) = A1(Xv).

The only thing that we need in the following is the action
of Au on a monomial vn−1

Au(vn−1) =
1
ε

∫ u

0
dvL(ε

d
dv
v)vn−1

=
1
ε

∫ u

0
vn−1dvL(nε) = Bnu

n. (13)

The quantity of interest x(s) is then obtained by ten-
soring Au with the simple integral method to obtain φ(t)
= Bt/t!.

6.2 The “twisted antipode”

In [7], Kreimer defines recursively SR, a twisted antipode5

depending on a given renormalization scheme R. We take
as an example the toy model used by Kreimer, and we
choose the minimal subtraction scheme: The Laurent ex-
pansion of φ is developed with respect to ε, and R[φ] = 〈φ〉
is the pole part of this expansion.

Following the results of Sect. 5.4.2, the Runge–Kutta
method for SR(φ) can be obtained from the Runge–Kutta
method of φ by the definition AS

u(X) = Au(X)−〈A1(X)〉,
5 SR(φ)(t) = −R

[
φ(t)+m[(SR ⊗ Id)(φ⊗φ)P2∆(t)]

]
in Hopf

algebra terms.

Ch. Brouder: Runge–Kutta methods and renormalization 529

BS(X) = −〈A1(X)〉. Working out the first examples using
(13), we find

φS
u(A) = 1,

φS(B) = −〈A1(1)〉 = −〈B1〉,
φS

u(C) = Au(φS
v (D)) − 〈A1(φS

v (E))〉 = Au(1) − 〈A1(1)〉
= B1u− 〈B1〉,

φS(F) = −〈A1(φS
u(G))〉 = −〈B2B1〉 + 〈〈B1〉B1〉.

This is identical to the first results of Sect. 4 of [7].

6.3 Renormalized quantities

Finally, the renormalized quantities xR(s) are obtained
from the convolution of SR(φ) with φ. To obtain the cor-
responding Runge–Kutta method, we use the results of
Sect. 5.4.1. One can show that the domain 1 ≤ u ≤ 2
is not used, and the Runge–Kutta method for the renor-
malized quantity is simply AR

u (X) = Au(X) − 〈A1(X)〉,
BR(X) = A1(X) − 〈A1(X)〉. It may seem surprising that
such a simple equation encodes the full combinatorial com-
plexity of renormalization. It is not even necessary to
work examples out, because AR

u (X) = AS
u(X), so that

φR
u (t) = φS

u(t), and the only difference comes from the
action of BR.

For an explicit calculation of XR(s), we do not need
AR

u and BR which give us φ(t), but rather the tensor prod-
uct of this method with the simple integral method to ob-
tain t!φ(t). In detail, the equation for the renormalized
quantity XR(s) is

XR
uu′(s) =

s

ε

∫ u

0
dv

∫ u′

0
dv′L(ε∂vv)eXvv′ (s) −

〈s
ε

∫ 1

0
dv

∫ u′

0
dv′L(ε∂vv)eXvv′ (s)〉, (14)

XR(s) =
s

ε

∫ 1

0
dv

∫ 1

0
dv′L(ε∂vv)eXvv′ (s) −

〈s
ε

∫ 1

0
dv

∫ 1

0
dv′L(ε∂vv)eXvv′ (s)〉. (15)

For a general renormalization scheme R, one replaces
〈Au(X)〉 by R[Au(X)].

7 Renormalization of Kreimer’s toy model

In this section, we use Runge–Kutta methods to renor-
malize explicitly Kreimer’s toy model for even functions
L(ε). This toy model was studied for pedagogical reasons
in [5,7], as it provides a convenient means to introduce
renormalization theory. Generalizations to more realistic
situations are discussed in [6]. In [5], remarkable proper-
ties of the renormalized sum of diagrams with “Connes–
Moscovici weights” (i.e., α(t)) were noticed. Some of the
properties conjectured in [5] will be proven in this section.

7.1 Equation for the renormalized quantity

The role of the sum over u′ in (15) is to add a factor
1/t!, as in Sect. 5.3. Therefore, the same reasoning can be
used to show that XR

uu′(s) is in fact a function of su′ and
we write XR

uu′(s) = XR
u (su′), which defines the function

XR
u (s). The equation for XR

u (s) can be found from (15)
and the relation XR

u (s) = XR
us(1) as

XR
u (s) =

1
ε

∫ u

0
dv

∫ s

0
ds′L(ε∂vv)eXv(s′) −

〈1
ε

∫ 1

0
dv

∫ s

0
ds′L(ε∂vv)eXv(s′)〉, (16)

XR(s) =
1
ε

∫ 1

0
dv

∫ s

0
ds′L(ε∂vv)eXv(s′) −

〈1
ε

∫ 1

0
dv

∫ s

0
ds′L(ε∂vv)eXv(s′)〉

= XR
1 (s).

To solve this equation, we expand XR
u (s) in a power series

over u:

XR
u (s) =

∞∑
n=0

an(s)un.

A standard identity [20] gives us

exp(XR
u (s)) = ea0(s)

∞∑
n=0

λn(a)un, where

λn(a) =
∑

|α|=n

aα1
1 · · · aαn

n

α1! · · ·αn!
,

with |α| = α1 + 2α2 + · · · + nαn. λn(a) depends on s
through its arguments ai(s). The sets of αi for a given
n can be obtained from the partitions of n: (µ1, . . . , µn),
where µ1 ≥ · · · ≥ µn by αn = µn, αi = µi−µi+1 for i < n.

The first few λn(a) are

λ0(a) = 1, λ1(a) = a1, λ2(a) = a2 +
a2
1

2
,

λ3(a) = a3 + a1a2 +
a3
1

6
.

7.2 Solution of the equation

Introducing the series for XR
u (s) and exp(XR

u (s)) into
(17), we obtain

∞∑
n=0

an(s)un =
∞∑

n=0

Bn+1

∫ s

0
ea0(s′)λn(a)ds′un+1 −

〈
∞∑

n=0

Bn+1

∫ s

0
ea0(s′)λn(a)ds′〉,

530 Ch. Brouder: Runge–Kutta methods and renormalization

or

a0(s) = −〈
∞∑

n=0

Bn+1

∫ s

0
ea0(s′)λn(a)ds′〉,

an(s) = Bn

∫ s

0
ea0(s′)λn−1(a)ds′ for n > 0. (17)

To solve this equation, we need to go back to the equa-
tion for the bare quantity,

X0
u(s) =

1
ε

∫ u

0
dv

∫ s

0
ds′L(ε∂vv)eX0

v(s′). (18)

Again X0
u(s) is a function of su; we define X0(s) = X0

s (1),
which satisfies

X0(s) =
1
ε

∫ s

0

du
u

∫ u

0
dvL(ε∂vv)eX0(v). (19)

The solution of this equation is given by the B-series

X0(s) =
∞∑

n=1

āns
n and ān =

∑
|t|=n

α(t)Bt

|t|! . (20)

On the other hand, we can also expand eX0(v) using
the functions λn(ā) and introduce the resulting series in
(19). This gives us

X0(s) =
∞∑

n=1

Bn

n
λn−1(ā)sn.

By comparison with (20), we obtain the relation

ān =
Bn

n
λn−1(ā). (21)

With this identity, we can now prove that for the renor-
malized quantities,

an(s) = (g(s))nān, with g(s) =
∫ s

0
exp(a0(s′))ds′.(22)

Since λ0(a) = 1 and ā1 = B1, this equation is true for
n = 1, from (17). If (22) is true up to n−1, then λn−1(a) =
(g(s))n−1λn−1(ā), and the derivative of (17) gives us

a′
n(s) = Bne

a0(s)λn−1(a) = Bng
′(s)(g(s))n−1λn−1(ā)

= ng′(s)(g(s))n−1ān,

by (21). Integrating this equation with the condition an(0)
= 0 gives (22) at level n.

By this we have proved thatXR
u (s) = a0(s)+X0(ug(s))

and XR(s) = a0(s) + X0(g(s)): The flow for the renor-
malized quantity is a reparametrization of the flow for the
bare quantity, plus a singular term that cancels the sin-
gular part of the bare flow, since a0(s) = −〈X0(ug(s))〉
from (17).

To determine a0(s) we proceed step by step. In (20)
we expand L(ε∂vv) over ε. The first term is just 1, and we
obtain (11) with the solution x(s) = −2 log(1 − s/(2ε)).

For the renormalized quantity, the most singular term be-
comes X0(g(s)) = −2 log(1 − g(s)/(2ε)). Since XR(s) is
regular, this singular term, must be compensated by a
corresponding term in a0(s). By equating the most sin-
gular terms we obtain a0(s) = 2 log(1 − g(s)/(2ε)). We
know from (22) that a0(s) = log(g′(s)), and we obtain
the most singular term as the solution of the equation
g′(s) = (1 − g(s)/(2ε))2, which is:

g(s) = s/(1 +
s

2ε
),

a0(s) = −2 log(1 +
s

2ε
).

By expanding a0(s) as a series in s, we obtain the most
singular term observed in [5] and proven in [7]. One no-
tices that the singularity of the nonpertubative term a0(s)
is logarithmic (2 log ε), and much smoother than the sin-
gularities coming from the expansion over s (i.e., the per-
turbative expression).

7.3 Differential equation for the finite part

In general, one should proceed at this point with the next
singular term. To obtain it we denote Y (s) = X0(g(s));
this change of variable gives the equation for Y (s):

Y (s) =
1
ε

∫ s

0

g′(u)du
g(u)

∫ u

0
dvg′(v)L(ε+ ε

g(v)
g′(v)

∂v)eY (v).

Since Y (s) = XR(s) − a0(s) and

a0(s) = −2 log(1 +
s

2ε
) = −

∫ s

0

du
u(ε+ u/2)

∫ u

0
dv,

we obtain the equation for XR(s):

XR(s) =
1
ε

∫ s

0

du
u(1 + u

2ε)

∫ u

0
dv

[
1

(1 + v
2ε)

2L(ε∂vv +
v2

2
∂v)(1 +

v

2ε
)
2
eXR(v) − 1

]
.

The nice aspect of the above equation is that it seems to
have a limit as ε tends to zero. In fact, it has a limit when
L is even, as we shall show now.

Writing X̄(s) = limε→0X
R(s), and taking the limit

ε → 0 in the previous equation, we obtain

X̄(s) = 2
∫ s

0

du
u2

∫ u

0
dv

[
1
v2L(

v2

2
∂v)v2eX̄(v) − 1

]
,

or, in differential form:

1
2
(s2X̄ ′(s))′ =

1
s2
L(
s2

2
d
ds

)s2eX̄(s) − 1. (23)

If X̄(s) and L(δ) are expanded as

X̄(s) =
∞∑

n=1

bns
n and L(δ) = 1 +

∞∑
n=1

Lnδ
n,

Ch. Brouder: Runge–Kutta methods and renormalization 531

and thus,

L(
s2

2
d
ds

) = 1 +
∞∑

n=1

Ln(
s2

2
d
ds

)n,

we obtain the following relation for the term in s: b1s =
(b1 + L1/2)s. If L1 is not zero, we obtain a contradiction
and must proceed further with the withdrawal of diver-
gences. For simplicity, we shall assume that L1 = 0. Then
b1 becomes a free parameter of X̄(s) that can be deter-
mined by a renormalization condition. All terms bn with
n > 1 can now be determined from b1 and Ln (n > 1). All
terms are regular. In other words, if X0(g(s)) is expanded
as a series

∑
n an(ε)sn, then

an(ε) =
(n− 1)!
2n−1εn

+Rn(ε),

and Rn(ε) is regular if L1 = 0. This fact was conjectured in
[5] for even functions L(δ), which obviously satisfy L1 = 0.
Their solution corresponds to the case b1 = 0. Broadhurst
and Kreimer have also used a function L(ε, δ). The present
treatment can be applied to this more general situation,
with the only change being that one has to use

Ln = n! lim
ε→0

lim
δ→0

dn

dδn
L(ε, δ).

Clearly, (23) is much faster to solve than a computa-
tion of the sum over trees. For instance, the expansion
could be calculated up to 20 loops (i.e., b20) within a few
seconds with a computer. Moreover, (23) is a nonpertur-
bative equation for the renormalized quantity X̄(s).

7.4 Alternative point of view

There is an alternative way to solve (18) for the bare quan-
tity. We define a function f(s) from L(δ) by

f(s, ε) =
∞∑

n=0

L(nε+ ε)
n!

sn = L(ε
d
ds
s)es.

A relation between f(s, ε) and L(δ) can also be established
through the Mellin transforms of f and L as M(f)(z, ε) =
M(L)(ε− εz)Γ (z).

With f(s, ε) we can write the equation for the bare
quantity as

X0(s) =
1
ε

∫ s

0

du
u

∫ u

0
dvf(X0(v), ε). (24)

Alternatively, one can go from f to L and consider
the results of the toy model as a method to renormalize
equations of the type in (24).

8 n-dimensional problems

For applications to classical field theory, we need to de-
velop Runge–Kutta methods for the n-dimensional analog

of the flow equation: nonlinear partial differential equa-
tions. The purpose of the present section is to indicate how
B-series can be used for this case. The method applies to
equations of the form Lψ(r) = F [ψ(r)], where L is a lin-
ear differential operator (e.g., the nonlinear Schrödinger
equation ∆ψ = ψ3).

8.1 Formulation

We need two starting elements: a function ψ0(r) which is
the solution of Lψ0(r) = 0, and a Green function G(r, r′),
that is a solution of the equation LrG(r, r′) = δ(r − r′),
with given boundary conditions. The function ψ0(r) will
play the role of an initial value, and the Green function
will decide in which “direction” one moves from the ini-
tial value. It will also state, in some sense, the boundary
conditions of the solution ψ(r).

Using these two functions, the differential equation
Lψ(r) = F [ψ(r)] is transformed into

ψ(r) = ψ0(r) +
∫

dr′G(r, r′)F [ψ(r′)]. (25)

The action of L enables us to go from the second to the
first equation.

As shown in the appendix, the solution of (25) is

ψ(r) = ψ0(r) +
∑

t

α(t)t!
|t|! φr(t), (26)

where φr(t) is defined recursively by

φr(H) =
∫

dr′G(r, r′)F [ψ0(r′)],

φr(B+(t1 · · · tk)) =
∫

dr′G(r, r′)F (k)[ψ0(r′)]

φr′(t1) . . . φr′(tk). (27)

If ψ is a vector field and F has components f i, the
solution is still given by (26), and the recursive relation
for the components φi becomes:

φi
r(I) =

∫
dr′Gi

j(r, r
′)f j [ψ0(r′)],

φi
r(B+(t1 · · · tk)) =

∫
dr′Gi

j(r, r
′)f j

j1...jk
[ψ0(r′)]

φj1
r′ (t1) . . . φ

jk

r′ (tk),

where Gi
j(r, r

′) is a component of the matrix Green func-
tion.

In the previous sections, the series (5) was written in
terms of φ(t) (describing the effect of the Runge–Kutta
method (a,b)) and δt (describing the effect of the function
F [x]). In the present case, this separation is no longer
possible, and φ(t) combines both pieces of information.

Several examples of the use of (26) will be given in
the next section. It will be shown that (26) is equivalent
to (5) for one-dimensional problems and that (26) gives
the usual Born expansion when F (ψ) is a linear operator.
Finally, the example of a cubic Klein–Gordon equation
will be briefly discussed.

532 Ch. Brouder: Runge–Kutta methods and renormalization

8.2 Simple examples

In this section, (26) is applied to the one-dimensional
problem and to the Schrödinger equation.

8.2.1 The one-dimensional case

It is instructive to observe how the one-dimensional case is
obtained from (26). The linear differential operator is L =
d/ds, so the initial function ψ0(s) must satisfy dψ0(s)/ds
= 0: ψ0(s) is a constant that we write x0. For the Green
function G(s, s′), we have the equation LG(s, s′) = δ(s−
s′), so G(s, s′) = θ(s− s′) + C(s′), where θ(s) is the step
function and C(s′) a function of s′. To determine C(s′),
we note that in the simple integral method, there is an
integral from s0 to s. This gives us C(s′) = −θ(s0 − s′),
and we obtain

∫ ∞

−∞
G(s, s′)f(s′)ds′ =

∫ s

s0

f(s′)ds′,

which is the required expression.
Now, the role of ψ0 and of the Green function is clear

for the one-dimensional case: ψ0 gives the initial value x0
and G specifies (among other things) the starting point s0.
To complete the derivation of the one-dimensional case,
we note that ψ0(s) = x0 does not depend on s, so the
terms F (k)[ψ0(s)] = F (k)[x0] are independent of s and
can be grouped together to build δt as in (3). On the
other hand, the integration over s′ builds up (s− s0)|t|/t!,
and we obtain (4).

8.2.2 The Schrödinger equation

If we write the Schrödinger equation as (E + ∆)ψ(r) =
V (r)ψ(r), we can apply (26) with F [ψ] = V (r)ψ because,
as is explained in the appendix, the expansion (26) is valid
also for F depending on r (i.e., F [ψ, r]).

We take for φ0(r) a solution of (E +∆)φ0(r) = 0 and
for G(r, r′) the scattering Green function in free space
(e.g., G(r − r′) = −ei

√
E|r−r′|/(4π|r − r′|) in three dimen-

sions).
The calculation of φ(t) is straightforward because in

such a linear problem, F (k) = 0 for k > 1. Hence, the only
rooted trees that survive are those with one branch. For
these trees α(t) = 1 and t! = |t|! and we obtain

ψ(r) = ψ0(r) +
∫

dr1G(r, r1)V (r1)ψ0(r1) +
∫

dr1dr2G(r, r1)V (r1)G(r1, r2)V (r2)ψ0(r2) + · · ·

where we recognize the Born expansion of the Lippmann–
Schwinger equation.

8.3 Nonlinear Klein–Gordon equation

As a more elaborate example, we consider the nonlinear
Klein–Gordon equation for v(x, t) studied by Jiang and
Wong [21]

vtt − γ2vxx + c2v − εv3 = 0, (28)

with t ≥ 0 and the boundary conditions v(x, 0) = cos kx
and vt(x, 0) = 0.

The Green function corresponding to this problem can
be obtained by standard methods [22] as

G(x, t;x′, t′) = (θ(t− t′) − θ(−t′))g(x− x′, t− t′),

with

g(x, t) =
1
2π

∫ ∞

−∞
dq

sin(ω(q)t) cos qx
ω(q)

,

g(x, t) =
1
2γ
J0

(
c
√
t2 − q2/γ2

)
for |q| < γt

= 0 for |q| > γt.

with ω(q) =
√
γ2q2 + c2. The initial function is ψ0(x, t) =

coswt cos kx (where w = ω(k)), the nonlinear function
is F (ψ) = εψ3. The solution of the nonlinear equation
(28) is given by formula (26), the second term of which is
calculated by (27) as

φ(J ;x, t) =
9εt
32w

sinwt cos kx+

3ε
128w2 (coswt− cos 3wt) cos kx+

3ε
128γ2k2 (coswt− cosw3t) cos 3kx+

ε

128c2
(cosw3t− cos 3wt) cos 3kx,

where w3 = ω(3k), and we have written φ(K ;x, t) for the
φr(L) of (27).

This result agrees with that of [21]. In comparison with
the standard method, where a differential equation must
be solved at each step, taking care of the boundary con-
ditions, the present method is completely automatic and
well suited to symbolic computational packages.

The unbounded term [(9εt)/(32w)] sinwt cos kx in φ(M ;
x, t) is called a secular term. It reduces the range of con-
vergence of (26). It can be canceled by a renormalization
of c defined by c2 → c2 − 9ε/16. With this new definition
of c, the Klein–Gordon equation becomes

vtt − γ2vxx + c2v = εv3 − ε
9
16
v.

The Green function is the same as for (28), with a modified
value of c, and the nonlinear term is now F (ψ) = εψ3 −
9εψ/16. Let us call φR(N ;x, t) the first term of the B-series

Ch. Brouder: Runge–Kutta methods and renormalization 533

for this new equation:

φR(O ;x, t) =
3ε

128w2 (coswt− cos 3wt) cos kx+

3ε
128γ2k2 (coswt− cosw3t) cos 3kx+

ε

128c2
(cosw3t− cos 3wt) cos 3kx;

the secular term has disappeared. However, the next term
φR(P ;x, t) still has a secular contribution,

3ε2t
1024w

(
(

1
c2

− 3
γ2k2) sinw3t cos 3kx+

(
9

2w2 − 1
4c2

+
9

4γ2k2) sinwt cos kx
)
.

It would be interesting to see if this term can also be
renormalized.

Within Butcher’s approach, it is still necessary to find
the generalization of RK equations to these nonlinear par-
tial differential equations such that for any map φr(t),
there is a member of the family of equations of which φr

is a solution.

9 Conclusion

Butcher’s approach to Runge–Kutta methods was applied
to some simple renormalization problems. Since Cayley, it
has been clear that the rooted trees are ideally suited to
treat differentials. This was confirmed here by the presen-
tation of a B-series solution of a class of nonlinear partial
differential equations.

The recursive nature of the B-series makes them com-
putationally efficient: φu(t) can be obtained by a simple
operation from the φu(t′) of smaller order t′.

Butcher’s approach has still much to offer. In the nu-
merical analysis literature, B-series have been generalized
to treat flow equations on Lie groups. The main change
[23] is to replace the algebra of rooted trees by the algebra
of planar trees (also called ordered trees [24]). The elemen-
tary differentials then get a “quantized calculus” flavor,
especially in the definition given by Munthe–Kaas [25] in
terms of commutators with the vector field F = f i∂i (see
also [26]). Using this generalized ART, extended work has
been carried out recently for the numerical solution of dif-
ferential equations on Lie groups (see [23,24] and the web
site http://www.math.ntnu.no/num/synode).

B-series have been generalized in other directions, e.g.,
stochastic differential equations [27] and differential equa-
tions of the type dy/ds = f(y, z), g(y, z) = 0, which are
called differential algebraic equations [28].

In a subsequent paper [29], it will be shown that many
features of Butcher’s approach can be adapted to the equa-
tions with functional derivatives that are met in quantum
field theory. The main difference comes from the fact that
planar binary trees will be used instead of rooted trees.

Acknowledgements. It is a great pleasure to thank Dirk Krei-
mer, Alain Connes, and John Butcher for interest, encourage-
ment, and discussions. I am grateful to Ale Frabetti, Philippe
Sainctavit, Dirk Kreimer, and David Broadhurst for their thor-
ough readings of the manuscript. This is IPGP contribution
#1627.

10 Appendix

To prove that (26) is the solution of (25) if φr(t) is given
by (27), we define ψ(r) by

ψ(r) = ψ0(r) +
∑

t

α(t)t!
|t|! φr(t) = ψ0(r) +

∑
t

1
σ(t)

φr(t),

where (1) is used. From a Taylor expansion of F , we can
write

F [ψ(r)] =
∞∑

k=0

(
ψ(r) − ψ0(r)

)k

k!
F (k)(ψ0(r))

=
∞∑

k=0

(∑
t φr(t)/σ(t)

)k

k!
F (k)(ψ0(r))

=
∞∑

k=0

1
k!

∑
t1...tk

1
σ(t1)

· · · 1
σ(tk)

F (k)(ψ0(r))φr(t1) . . . φr(tk).

Now we multiply F [ψ(r′)] by G(r, r′) and integrate over
r′. For k = 0, we obtain simply φr(Q); for k > 1, the
definition (27) of φr(t) gives us∫

dr′G(r, r′)F [ψ(r′)] = φr(R) +

∞∑
k=1

1
k!

∑
t1...tk

1
σ(t1)

· · · 1
σ(tk)

φr(B+(t1 . . . tk)).

If we sum over all the k-tuples of trees (t1, . . . , tk) which
give the same tree B+(t1 . . . tk), we obtain for this sum

1
k!

∑
t1...tk

1
σ(t1)

· · · 1
σ(tk)

=
1

σ
(
B+(t1 . . . tk)

) ,
because of the definition of σ(t) given by (2). Now, in the
sum over trees that is left, each tree different from S is
generated once and only once by B+(t1 . . . tk). Therefore,∫

dr′G(r, r′)F [ψ(r′)] = φr(T) +
∑
t6=U

1
σ(t)

φr(t)

= ψ(r) − ψ0(r).

We have checked that ψ(r) is a solution of (25).
It is clear that the above proof remains valid if F

is vector-valued and if F depends on r (F = F [ψ, r]),
but the derivatives F (k) are still taken with respect to ψ
only. Moreover, equations of the type Lψ(r) = f(r) +
F [ψ(r)], where f(r) is a given function, can be solved
with exactly the same formula, except that now ψ0(r) =∫

dr′G(r, r′)f(r′).

534 Ch. Brouder: Runge–Kutta methods and renormalization

References

1. C. Runge, Math. Ann. 46, 167 (1895)
2. W. Kutta, Zeit. Math. Phys. 46, 435 (1901)
3. E. Hairer and G. Wanner, Computing 13, 1 (1974)
4. D. Kreimer, Adv. Th. Math. Phys. 2, 303 (1998)
5. D.J. Broadhurst and D. Kreimer, J. Symbolic Computa-

tion 27, 581 (1999)
6. D. Kreimer and R. Delbourgo, Phys. Rev. D 60, 105025

(1999)
7. D. Kreimer, Adv. Th. Math. Phys., hep-th/9901099, 3,

1999 (in press)
8. D. Kreimer, Commun. Math. Phys. 204, 669 (1999)
9. T. Krajewski and R Wulkenhaar, Eur. Phys. J. C 7, 697

(1999)
10. A. Connes and D. Kreimer, Commun. Math. Phys. 199,

203 (1998)
11. A. Dür, in Möbius functions, incidence algebras and power

series representations (Springer, Berlin 1986)
12. A. Tucker, in Applied Combinatorics (Wiley, New York

1980).
13. S.V. Fomin and N. Lulov, J. Math. Sci. 87, 4118 (1997)
14. J.C. Butcher, J. Austral. Math. Soc. 3, 185 (1963)

15. J. C. Butcher, in The Numerical Analysis of Ordinary
Differential Equations (Wiley, Chichester 1987)

16. E. Hairer, S.P. Nørsett, and G. Wanner, in Solving Ordi-
nary Differential Equations I (Springer, Berlin 1993)

17. A. Cayley, Phil. Mag. 13, 172 (1857)
18. J.C. Butcher, Math. Comput. 26, 79 (1972)
19. J. Zeng and J. Ramanujan, 3, 45 (1999)
20. M. Abramowitz and I.A. Stegun, in Handbook of Mathe-

matical Functions (Dover, New York 1964)
21. X.-H. Jiang and R. Wong, Stud. Appl. Math. 102, 375

(1999)
22. G. Barton, in Elements of Green’s Function and Propaga-

tion: Potentials, Diffusion and Waves (Oxford University
Press, Oxford 1989)

23. H. Munthe-Kaas, BIT 38, 92 (1998)
24. B. Owren and A. Marthinsen, BIT 39, 116 (1999)
25. H. Munthe-Kaas, BIT 35, 572 (1995)
26. M. Ginocchio, Lett. Math. Phys. 34, 343 (1995)
27. Y. Komori, T. Mitsui, and H. Sugiura, BIT 37, 43 (1997)
28. E. Hairer and G. Wanner, in Solving Ordinary Differential

Equations II (Springer, Berlin 1991)
29. Ch. Brouder, Eur. Phy. J. C 12, 535 (2000)

